195 research outputs found

    An exfoliation and enrichment strategy results in improved transcriptional profiles when compared to matched formalin fixed samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identifying the influence formalin fixation has on RNA integrity and recovery from clinical tissue specimens is integral to determining the utility of using archival tissue blocks in future molecular studies. For clinical material, the current gold standard is unfixed tissue that has been snap frozen. Fixed and frozen tissue however, both require laser capture microdissection to select for a specific cell population to study. The recent development of a sampling method capable of obtaining a viable, enriched cell population represents an alternative option in procuring cells from clinical material for molecular research purposes. The expression profiles of cells obtained by using this procurement approach, in conjunction with the profiles from cells laser capture microdissected from frozen tissue sections, were compared to the expression profiles from formalin fixed cells to determine the influence fixation has on expression profiles in clinical material.</p> <p>Methods</p> <p>Triplicate samples of non-neoplastic colonic epithelial cells were recovered from a hemicolectomy specimen using three different procurement methods from the same originating site: 1) an exfoliation and enrichment strategy 2) laser capture microdissection from formalin fixed tissue and 3) laser capture microdissection from frozen tissue. Parameters currently in use to assess RNA integrity were utilized to assess the quality of recovered RNA. Additionally, an expression microarray was performed on each sample to assess the influence each procurement technique had on RNA recovery and degradation.</p> <p>Results</p> <p>The exfoliation/enrichment strategy was quantitatively and qualitatively superior to tissue that was formalin fixed. Fixation negatively influenced the expression profile of the formalin fixed group compared to both the frozen and exfoliated/enrichment groups.</p> <p>Conclusion</p> <p>The exfoliation/enrichment technique represents a superior alternative in tissue procurement and RNA recovery relative to formalin fixed tissue. None of the deleterious effects associated with formalin fixation are encountered in the exfoliated/enriched samples because of the absence of its use in this protocol. The exfoliation/enrichment technique also represents an economical alternative that will yield comparable results to cells enriched by laser capture microdissection from frozen tissue sections.</p

    Genomic approaches to research in lung cancer

    Get PDF
    The medical research community is experiencing a marked increase in the amount of information available on genomic sequences and genes expressed by humans and other organisms. This information offers great opportunities for improving our understanding of complex diseases such as lung cancer. In particular, we should expect to witness a rapid increase in the rate of discovery of genes involved in lung cancer pathogenesis and we should be able to develop reliable molecular criteria for classifying lung cancers and predicting biological properties of individual tumors. Achieving these goals will require collaboration by scientists with specialized expertise in medicine, molecular biology, and decision-based statistical analysis

    High-throughput genomic technology in research and clinical management of breast cancer. Plasma-based proteomics in early detection and therapy

    Get PDF
    Protein-based breast cancer biomarkers are a promising resource for breast cancer detection at the earliest and most treatable stages of the disease. Plasma is well suited to proteomic-based methods of biomarker discovery because it is easily obtained, is routinely used in the diagnosis of many diseases, and has a rich proteome. However, due to the vast dynamic range in protein concentration and the often uncertain tissue and cellular origin of plasma proteins, proteomic analysis of plasma requires special consideration compared with tissue and cultured cells. This review briefly touches on the search for plasma-based protein biomarkers for the early detection and treatment of breast cancer

    Delineation of prognostic biomarkers in prostate cancer

    Full text link
    Prostate cancer is the most frequently diagnosed cancer in American men(1,2). Screening for prostate-specific antigen (PSA) has led to earlier detection of prostate cancer(3), but elevated serum PSA levels may be present in non-malignant conditions such as benign prostatic hyperlasia (BPH). Characterization of gene-expression profiles that molecularly distinguish prostatic neoplasms may identify genes involved in prostate carcinogenesis, elucidate clinical biomarkers, and lead to an improved classification of prostate cancer(4-6). Using microarrays of complementary DNA, we examined gene-expression profiles of more than 50 normal and neoplastic prostate specimens and three common prostate-cancer cell lines. Signature expression profiles of normal adjacent prostate (NAP), BPH, localized prostate cancer, and metastatic, hormone-refractory prostate cancer were determined. Here we establish many associations between genes and prostate cancer. We assessed two of these genes-hepsin, a transmembrane serine protease, and pim-1, a serine/threonine kinase-at the protein level using tissue microarrays consisting of over 700 clinically stratified prostate-cancer specimens. Expression of hepsin and pim-1 proteins was significantly correlated with measures of clinical outcome. Thus, the integration of cDNA microarray, high-density tissue microarray, and linked clinical and pathology data is a powerful approach to molecular profiling of human cancer.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62849/1/412822a0.pd

    92-Gene Molecular Profiling in Identification of Cancer Origin: A Retrospective Study in Chinese Population and Performance within Different Subgroups

    Get PDF
    BACKGROUND: After cancer diagnosis, therapy for the patient is largely dependent on the tumor origin, especially when a metastatic tumor is being treated. However, cases such as untypical metastasis, poorly differentiated tumors or even a limited number of tumor cells may lead to challenges in identifying the origin. Moreover, approximately 3% to 5% of total solid tumor patients will not have to have their tumor origin identified in their lifetime. The THEROS CancerTYPE ID® is designed for identifying the tumor origin with an objective, rapid and standardized procedure. METHODOLOGY AND PRINCIPAL FINDINGS: This is a blinded retrospective study to evaluate performance of the THEROS CancerTYPE ID® in a Chinese population. In total, 184 formalin-fixed paraffin-embedded (FFPE) samples of 23 tumor origins were collected from the tissue bank of Fudan University Shanghai Cancer Center (FDUSCC). A standard tumor cell enrichment process was used, and the prediction results were compared with reference diagnosis, which was confirmed by two experienced pathologists at FDUSCC. All of the 184 samples were successfully analyzed, and no tumor specimens were excluded because of sample quality issues. In total, 151 samples were correctly predicted. The agreement rate was 82.1%. A Pearson Chi-square test shows that there is no difference between this study and the previous evaluation test performed by bioTheranostics Inc. No statistically significant decrease was observed in either the metastasis group or tumors with high grades. CONCLUSIONS: A comparable result with previous work was obtained. Specifically, specimens with a high probability score (>0.85) have a high chance (agreement rate = 95%) of being correctly predicted. No performance difference was observed between primary and metastatic specimens, and no difference was observed among three tumor grades. The use of laser capture micro-dissection (LCM) makes the THEROS CancerTYPE ID® accessible to almost all of the cancer patients with different tumor statuses

    Impact of sample acquisition and linear amplification on gene expression profiling of lung adenocarcinoma: laser capture micro-dissection cell-sampling versus bulk tissue-sampling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The methods used for sample selection and processing can have a strong influence on the expression values obtained through microarray profiling. Laser capture microdissection (LCM) provides higher specificity in the selection of target cells compared to traditional bulk tissue selection methods, but at an increased processing cost. The benefit gained from the higher tissue specificity realized through LCM sampling is evaluated in this study through a comparison of microarray expression profiles obtained from same-samples using bulk and LCM processing.</p> <p>Methods</p> <p>Expression data from ten lung adenocarcinoma samples and six adjacent normal samples were acquired using LCM and bulk sampling methods. Expression values were evaluated for correlation between sample processing methods, as well as for bias introduced by the additional linear amplification required for LCM sample profiling.</p> <p>Results</p> <p>The direct comparison of expression values obtained from the bulk and LCM sampled datasets reveals a large number of probesets with significantly varied expression. Many of these variations were shown to be related to bias arising from the process of linear amplification, which is required for LCM sample preparation. A comparison of differentially expressed genes (cancer vs. normal) selected in the bulk and LCM datasets also showed substantial differences. There were more than twice as many down-regulated probesets identified in the LCM data than identified in the bulk data. Controlling for the previously identified amplification bias did not have a substantial impact on the differences identified in the differentially expressed probesets found in the bulk and LCM samples.</p> <p>Conclusion</p> <p>LCM-coupled microarray expression profiling was shown to uniquely identify a large number of differentially expressed probesets not otherwise found using bulk tissue sampling. The information gain realized from the LCM sampling was limited to differential analysis, as the absolute expression values obtained for some probesets using this study's protocol were biased during the second round of amplification. Consequently, LCM may enable investigators to obtain additional information in microarray studies not easily found using bulk tissue samples, but it is of critical importance that potential amplification biases are controlled for.</p

    High quality RNA isolation from Aedes aegypti midguts using laser microdissection microscopy

    Get PDF
    Background: Laser microdissection microscopy (LMM) has potential as a research tool because it allows precise excision of target tissues or cells from a complex biological specimen, and facilitates tissue-specific sample preparation. However, this method has not been used in mosquito vectors to date. To this end, we have developed an LMM method to isolate midgut RNA using Aedes aegypti

    Transformation and analysis of tobacco plant var Petit havana with T-urf13 gene under anther-specific TA29 promoter

    Get PDF
    T-urf13, a well-documented cms-associated gene from maize, has been shown to render methomyl sensitivity to heterologous systems like rice, yeast and bacteria when expressed constitutively. Since these transgenic plants were fertile, it was hypothesized that T-urf13 gene if expressed in anthers may result in male sterility that could be used for hybrid seed production. Hence, this work was aimed at analysing whether T-urf13 gene when expressed in anthers can result in male sterile plants or requires methomyl treatment to cause male sterility (controllable). This is the first report of transformation of tobacco with T-urf13 gene under anther-specific promoter (TA29) with or without mitochondrial targeting sequence. Most of the transgenic plants obtained were fertile; this was surprising as many male sterile plants were expected as T-urf13 gene is a cms associated gene. Our results suggest that it may not be possible to obtain male sterility by expressing URF13 in the anther by itself or by methomyl application

    Factors affecting the yield of microRNAs from laser microdissectates of formalin-fixed tissue sections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantification of microRNAs in specific cell populations microdissected from tissues can be used to define their biological roles, and to develop and deploy biomarker assays. In this study, a number of variables were examined for their effect on the yield of microRNAs in samples obtained from formalin-fixed paraffin-embedded tissues by laser microdissection.</p> <p>Results</p> <p>MicroRNA yield was improved by using cresyl violet instead of hematoxylin-eosin to stain tissue sections in preparation for microdissection, silicon carbide instead of glass fiber as matrix in RNA-binding columns, and overnight digestion of dissected samples with proteinase K. Storage of slides carrying stained tissue sections at room temperature for up to a week before microdissection, and storage of the microdissectates at room temperature for up to a day before RNA extraction did not adversely affect microRNA yield.</p> <p>Conclusions</p> <p>These observations should be of value for the efficient isolation of microRNAs from microdissected formalin-fixed tissues with a flexible workflow.</p

    Gene Expression Analysis of In Vivo Fluorescent Cells

    Get PDF
    BACKGROUND: The analysis of gene expression for tissue homogenates is of limited value because of the considerable cell heterogeneity in tissues. However, several methods are available to isolate a cell type of interest from a complex tissue, the most reliable one being Laser Microdissection (LMD). Cells may be distinguished by their morphology or by specific antigens, but the obligatory staining often results in RNA degradation. Alternatively, particular cell types can be detected in vivo by expression of fluorescent proteins from cell type-specific promoters. METHODOLOGY/PRINCIPAL FINDINGS: We developed a technique for fixing in vivo fluorescence in brain cells and isolating them by LMD followed by an optimized RNA isolation procedure. RNA isolated from these cells was of equal quality as from unfixed frozen tissue, with clear 28S and 18S rRNA bands of a mass ratio of approximately 2ratio1. We confirmed the specificity of the amplified RNA from the microdissected fluorescent cells as well as its usefulness and reproducibility for microarray hybridization and quantitative real-time PCR (qRT-PCR). CONCLUSIONS/SIGNIFICANCE: Our technique guarantees the isolation of sufficient high quality RNA obtained from specific cell populations of the brain expressing soluble fluorescent marker, which is a critical prerequisite for subsequent gene expression studies by microarray analysis or qRT-PCR
    corecore